
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive capabilities. AGI is considered among the definitions of strong AI.

Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and advancement projects across 37 countries. [4]
The timeline for achieving AGI stays a subject of ongoing dispute amongst researchers and experts. Since 2023, some argue that it may be possible in years or years; others keep it may take a century or longer; a minority think it may never ever be achieved; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the fast progress towards AGI, recommending it might be achieved earlier than lots of anticipate. [7]
There is dispute on the exact definition of AGI and regarding whether contemporary large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have actually specified that reducing the danger of human extinction postured by AGI should be a global concern. [14] [15] Others find the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources reserve the term "strong AI" for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) is able to fix one specific issue however does not have basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]
Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is much more normally smart than humans, [23] while the concept of transformative AI associates with AI having a large effect on society, for instance, similar to the agricultural or industrial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, competent, expert, virtuoso, and superhuman. For instance, a qualified AGI is defined as an AI that surpasses 50% of experienced grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a limit of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers typically hold that intelligence is required to do all of the following: [27]
factor, usage technique, resolve puzzles, and make judgments under uncertainty
represent knowledge, including good sense knowledge
plan
learn
- interact in natural language
- if required, integrate these abilities in conclusion of any provided goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider additional qualities such as imagination (the capability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show a number of these capabilities exist (e.g. see computational imagination, automated reasoning, decision support group, robot, evolutionary computation, intelligent representative). There is debate about whether modern-day AI systems have them to a sufficient degree.
Physical characteristics
Other abilities are considered preferable in smart systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. relocation and manipulate objects, change place to check out, etc).
This consists of the capability to discover and react to danger. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and control objects, modification area to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might already be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a particular physical personification and hence does not require a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The concept of the test is that the machine needs to try and pretend to be a male, by addressing questions put to it, and it will just pass if the pretence is fairly persuading. A significant part of a jury, who ought to not be skilled about makers, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to implement AGI, since the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to need basic intelligence to fix along with humans. Examples consist of computer vision, natural language understanding, and handling unforeseen scenarios while solving any real-world problem. [48] Even a specific task like translation needs a device to check out and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these issues require to be resolved at the same time in order to reach human-level device efficiency.
However, a number of these tasks can now be performed by modern-day big language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for grandtribunal.org checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were encouraged that artificial general intelligence was possible and that it would exist in just a few years. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could produce by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of developing 'synthetic intelligence' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became obvious that scientists had actually grossly underestimated the difficulty of the project. Funding firms ended up being doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual discussion". [58] In action to this and the success of expert systems, both market and federal government pumped cash into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in twenty years, AI researchers who forecasted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a credibility for making vain promises. They ended up being hesitant to make predictions at all [d] and prevented mention of "human level" synthetic intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained commercial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven results and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation market, and research in this vein is heavily moneyed in both academic community and market. Since 2018 [upgrade], advancement in this field was thought about an emerging trend, and a fully grown stage was expected to be reached in more than 10 years. [64]
At the turn of the century, lots of traditional AI scientists [65] hoped that strong AI might be established by combining programs that fix different sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to expert system will one day fulfill the conventional top-down path over half way, prepared to supply the real-world proficiency and the commonsense understanding that has actually been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we must even try to reach such a level, since it looks as if getting there would just amount to uprooting our symbols from their intrinsic meanings (therefore simply lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic general intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy goals in a vast array of environments". [68] This kind of AGI, characterized by the capability to maximise a mathematical meaning of intelligence rather than display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a number of guest lecturers.
As of 2023 [update], a small number of computer researchers are active in AGI research study, and many add to a series of AGI conferences. However, increasingly more researchers are interested in open-ended knowing, [76] [77] which is the idea of permitting AI to continually discover and innovate like humans do.
Feasibility
As of 2023, the advancement and prospective achievement of AGI remains a topic of extreme argument within the AI community. While traditional consensus held that AGI was a remote goal, current advancements have actually led some scientists and market figures to claim that early types of AGI may currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and fundamentally unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level synthetic intelligence is as broad as the gulf between current area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the lack of clarity in defining what intelligence entails. Does it require consciousness? Must it show the ability to set objectives along with pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence require clearly duplicating the brain and its specific professors? Does it require feelings? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, however that the present level of development is such that a date can not accurately be anticipated. [84] AI experts' views on the feasibility of AGI wax and wane. Four polls performed in 2012 and 2013 recommended that the typical estimate among experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the very same question but with a 90% self-confidence instead. [85] [86] Further current AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has already been achieved with frontier models. They wrote that hesitation to this view comes from 4 primary factors: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 also marked the development of large multimodal designs (big language designs efficient in processing or creating multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time thinking before they react". According to Mira Murati, this capability to believe before responding represents a new, extra paradigm. It improves design outputs by investing more computing power when creating the answer, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had actually attained AGI, mentioning, "In my opinion, we have currently attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than many people at most tasks." He also dealt with criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the scientific technique of observing, assuming, and verifying. These statements have stimulated dispute, as they rely on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show amazing versatility, they may not totally fulfill this requirement. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the business's strategic intents. [95]
Timescales
Progress in expert system has historically gone through periods of rapid progress separated by durations when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to produce space for further development. [82] [98] [99] For example, the computer system hardware readily available in the twentieth century was not sufficient to implement deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a really versatile AGI is built differ from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research study neighborhood appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually given a wide variety of viewpoints on whether progress will be this fast. A 2012 meta-analysis of 95 such opinions discovered a bias towards predicting that the onset of AGI would happen within 16-26 years for modern-day and historic predictions alike. That paper has actually been slammed for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the conventional approach used a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was related to as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old child in first grade. An adult concerns about 100 on average. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in performing numerous varied jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI models and demonstrated human-level performance in tasks spanning multiple domains, such as mathematics, coding, and law. This research stimulated an argument on whether GPT-4 might be thought about an early, incomplete version of synthetic basic intelligence, stressing the requirement for more exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this stuff might actually get smarter than people - a couple of people believed that, [...] But the majority of individuals thought it was way off. And I believed it was way off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been pretty amazing", which he sees no factor why it would slow down, anticipating AGI within a decade or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test a minimum of as well as people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With whole brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational gadget. The simulation design need to be adequately devoted to the original, so that it behaves in practically the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been talked about in expert system research [103] as a method to strong AI. Neuroimaging technologies that might provide the needed comprehensive understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will end up being available on a comparable timescale to the computing power required to emulate it.
Early approximates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be needed, given the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different estimates for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He utilized this figure to predict the essential hardware would be readily available at some point between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron design presumed by Kurzweil and utilized in numerous current synthetic neural network implementations is basic compared with biological neurons. A brain simulation would likely need to record the comprehensive cellular behaviour of biological neurons, presently understood just in broad outline. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers several orders of magnitude bigger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are known to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain method obtains from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any totally practical brain model will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unknown whether this would suffice.
Philosophical perspective
"Strong AI" as specified in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and awareness.
The first one he called "strong" because it makes a more powerful declaration: it assumes something unique has actually happened to the device that goes beyond those abilities that we can check. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is also common in academic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - undoubtedly, there would be no way to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have numerous meanings, and some elements play significant functions in science fiction and the ethics of synthetic intelligence:
Sentience (or "extraordinary awareness"): The ability to "feel" perceptions or feelings subjectively, rather than the ability to factor about perceptions. Some thinkers, such as David Chalmers, use the term "consciousness" to refer exclusively to phenomenal consciousness, which is roughly comparable to life. [132] Determining why and how subjective experience occurs is called the hard problem of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be mindful. If we are not conscious, then it does not seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had achieved life, though this claim was commonly contested by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, specifically to be purposely knowledgeable about one's own thoughts. This is opposed to just being the "subject of one's believed"-an operating system or debugger has the ability to be "conscious of itself" (that is, to represent itself in the same method it represents whatever else)-however this is not what people typically suggest when they utilize the term "self-awareness". [g]
These characteristics have a moral dimension. AI sentience would offer rise to issues of welfare and legal defense, likewise to animals. [136] Other elements of awareness related to cognitive abilities are also pertinent to the concept of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such goals, AGI could assist mitigate various problems in the world such as hunger, poverty and health problems. [139]
AGI could enhance efficiency and efficiency in the majority of jobs. For example, in public health, AGI could accelerate medical research study, notably against cancer. [140] It could take care of the senior, [141] and equalize access to rapid, premium medical diagnostics. It might provide fun, low-cost and personalized education. [141] The requirement to work to subsist might end up being outdated if the wealth produced is properly redistributed. [141] [142] This also raises the concern of the place of humans in a radically automated society.
AGI might likewise help to make logical decisions, and to anticipate and avoid disasters. It could likewise assist to reap the advantages of possibly catastrophic innovations such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's main objective is to avoid existential disasters such as human extinction (which might be difficult if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to drastically reduce the dangers [143] while decreasing the impact of these steps on our lifestyle.
Risks
Existential risks
AGI may represent numerous kinds of existential danger, which are dangers that threaten "the premature extinction of Earth-originating intelligent life or the irreversible and extreme destruction of its potential for desirable future development". [145] The danger of human extinction from AGI has been the topic of lots of arguments, however there is likewise the possibility that the development of AGI would result in a permanently flawed future. Notably, it might be used to spread out and maintain the set of values of whoever develops it. If humanity still has ethical blind areas comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could facilitate mass surveillance and indoctrination, which could be used to create a stable repressive worldwide totalitarian program. [147] [148] There is likewise a threat for the makers themselves. If devices that are sentient or otherwise worthy of moral consideration are mass developed in the future, engaging in a civilizational course that indefinitely neglects their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI might improve humanity's future and assistance lower other existential dangers, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for humans, which this danger needs more attention, is questionable but has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, facing possible futures of incalculable advantages and risks, the professionals are undoubtedly doing whatever possible to make sure the best result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll show up in a couple of years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence enabled humanity to control gorillas, which are now susceptible in methods that they might not have expected. As an outcome, the gorilla has ended up being a threatened species, not out of malice, but merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we ought to take care not to anthropomorphize them and interpret their intents as we would for humans. He said that people won't be "smart enough to create super-intelligent machines, yet ridiculously stupid to the point of giving it moronic objectives with no safeguards". [155] On the other side, the concept of instrumental merging recommends that nearly whatever their goals, smart agents will have factors to attempt to make it through and acquire more power as intermediary steps to accomplishing these objectives. And that this does not need having emotions. [156]
Many scholars who are worried about existential threat advocate for more research into fixing the "control issue" to respond to the concern: what kinds of safeguards, algorithms, or architectures can developers carry out to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, instead of destructive, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might cause a race to the bottom of safety preventative measures in order to launch items before competitors), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can posture existential danger likewise has critics. Skeptics usually say that AGI is unlikely in the short-term, or that issues about AGI distract from other issues associated with existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of individuals outside of the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, leading to more misconception and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some scientists believe that the communication projects on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and researchers, released a joint declaration asserting that "Mitigating the danger of extinction from AI should be a global top priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees may see at least 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, ability to make choices, to interface with other computer tools, however likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly bad if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern appears to be toward the 2nd option, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to adopt a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI effect
AI security - Research area on making AI safe and helpful
AI positioning - AI conformance to the designated objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated maker learning - Process of automating the application of device knowing
BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of expert system to play different video games
Generative artificial intelligence - AI system efficient in generating content in action to prompts
Human Brain Project - Scientific research study project
Intelligence amplification - Use of information innovation to enhance human intelligence (IA).
Machine principles - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving numerous maker discovering jobs at the same time.
Neural scaling law - Statistical law in machine knowing.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Machine learning strategy.
Loebner Prize - Annual AI competitors.
Hardware for artificial intelligence - Hardware specifically designed and enhanced for artificial intelligence.
Weak synthetic intelligence - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet characterize in general what type of computational treatments we want to call intelligent. " [26] (For a discussion of some meanings of intelligence used by expert system scientists, see viewpoint of expert system.).
^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became identified to fund just "mission-oriented direct research study, instead of standard undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the innovators of new general formalisms would express their hopes in a more guarded kind than has actually sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that devices might perhaps act smartly (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are really thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence benefits all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton stops Google and cautions of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine threat is not AI itself however the method we deploy it.
^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential threats to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI should be an international priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of threat of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent traits is based on the topics covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term synthetic intelligence for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite development in maker intelligence, synthetic general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of professional opinion. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic